Counting review

Countability

To infinity and beyond

Michael Psenka

Intro question

• As many even integers as odd integers?

• As many even integers as integers?

Countably infinite sets

Definition. The set S is said to be countable (countably infinite) if there exists a bijective map $f: S \leftrightarrow \mathbb{N}$.

• In this sense, we can say that S and \mathbb{N} have the same cardinality.

What sets are countable?

The smallest infinity

Theorem. Every infinite subset of a countable set is countable.

• \mathbb{Z} is countable.

• $\mathbb{Z} \times \mathbb{Z}$ is countable.

- Corollary. The following sets are countable:
- 1. The rational numbers \mathbb{Q} .

2. The sets
$$\mathbb{Z}^{\times k} \coloneqq \mathbb{Z} \times \cdots \times \mathbb{Z}$$
 (k copies).

Theorem. Any countable union of countable sets is countable.

Another question

Denote Z^N as the set of (countably) infinite sequences of integers.
 Does there exist a bijection between the following:

 $\mathbb{Z}^{\mathbb{N}} \leftrightarrow \bigcup_{k=1}^{\infty} \mathbb{Z}^{\times k}$?

The ceiling of countability

• The set $\{0,1\}^N$ is not countable (uncountable).

Uncountable sets

Corollary. The following sets are uncountable:
1. The real numbers R.

2. The set of subsets of \mathbb{N} (denoted $\mathcal{P}(\mathbb{N})$).

Uncountable(?) sets

The set of finite subsets of \mathbb{N}

Uncountable sets

Any nonempty closed interval $[a, b] \subset \mathbb{R}$ is uncountable.

Question: "how to measure size of uncountable sets"?

Measure zero and countability

Measure theory: measuring the size of (almost) arbitrary sets.

The Cantor set

The Cantor set $\bigcap_{k=1}^{\infty} C_k$ is both measure zero and uncountable.